2D-LCoLBP : A Learning Two-Dimensional Co-Occurrence Local Binary Pattern for Image Recognition

The rotation, scale and translation invariance of extracted features have a high significance in image recognition. Local binary pattern (LBP) and LBP-based descriptors have been widely used in image recognition due to feature discrimination and computational efficiency. However, most of the existin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 17., Seite 7228-7240
1. Verfasser: Bi, Xiuli (VerfasserIn)
Weitere Verfasser: Yuan, Yuan, Xiao, Bin, Li, Weisheng, Gao, Xinbo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM329469266
003 DE-627
005 20231225205204.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3104163  |2 doi 
028 5 2 |a pubmed24n1098.xml 
035 |a (DE-627)NLM329469266 
035 |a (NLM)34403337 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bi, Xiuli  |e verfasserin  |4 aut 
245 1 0 |a 2D-LCoLBP  |b A Learning Two-Dimensional Co-Occurrence Local Binary Pattern for Image Recognition 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.08.2021 
500 |a Date Revised 23.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The rotation, scale and translation invariance of extracted features have a high significance in image recognition. Local binary pattern (LBP) and LBP-based descriptors have been widely used in image recognition due to feature discrimination and computational efficiency. However, most of the existing LBP-based descriptors have been designed to achieve rotation invariance while fail to achieve scale invariance. Moreover, it is usually difficult to achieve a good trade-off between the feature discrimination and the feature dimension. In this work, a learning 2D co-occurrence LBP termed 2D-LCoLBP is proposed to address these issues. Firstly, a weighted joint histogram is constructed in different neighborhoods and scales of an image to represent the multi-neighborhood and multi-scale LBP (2D-MLBP) and achieve the rotation invariance. A feature learning strategy is then designed to learn the compact and robust descriptor (2D-LCoLBP) from LBP pattern pairs across different scales in the extracted 2D-MLBP to characterize the most stable local structures and achieve the scale invariance, as well as decrease the feature dimension and improve the noise robustness. Finally, a linear SVM classifier is employed for recognition. We applied the proposed 2D-LCoLBP on four image recognition tasks-texture, object, face and food recognition with ten image databases. Experimental results show that 2D-LCoLBP has obviously low feature dimension but outperforms the state-of-the-art LBP-based descriptors in terms of recognition accuracy under noise-free, Gaussian noise and JPEG compression conditions 
650 4 |a Journal Article 
700 1 |a Yuan, Yuan  |e verfasserin  |4 aut 
700 1 |a Xiao, Bin  |e verfasserin  |4 aut 
700 1 |a Li, Weisheng  |e verfasserin  |4 aut 
700 1 |a Gao, Xinbo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 17., Seite 7228-7240  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:17  |g pages:7228-7240 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3104163  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 17  |h 7228-7240