2D-LCoLBP : A Learning Two-Dimensional Co-Occurrence Local Binary Pattern for Image Recognition

The rotation, scale and translation invariance of extracted features have a high significance in image recognition. Local binary pattern (LBP) and LBP-based descriptors have been widely used in image recognition due to feature discrimination and computational efficiency. However, most of the existin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 17., Seite 7228-7240
1. Verfasser: Bi, Xiuli (VerfasserIn)
Weitere Verfasser: Yuan, Yuan, Xiao, Bin, Li, Weisheng, Gao, Xinbo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The rotation, scale and translation invariance of extracted features have a high significance in image recognition. Local binary pattern (LBP) and LBP-based descriptors have been widely used in image recognition due to feature discrimination and computational efficiency. However, most of the existing LBP-based descriptors have been designed to achieve rotation invariance while fail to achieve scale invariance. Moreover, it is usually difficult to achieve a good trade-off between the feature discrimination and the feature dimension. In this work, a learning 2D co-occurrence LBP termed 2D-LCoLBP is proposed to address these issues. Firstly, a weighted joint histogram is constructed in different neighborhoods and scales of an image to represent the multi-neighborhood and multi-scale LBP (2D-MLBP) and achieve the rotation invariance. A feature learning strategy is then designed to learn the compact and robust descriptor (2D-LCoLBP) from LBP pattern pairs across different scales in the extracted 2D-MLBP to characterize the most stable local structures and achieve the scale invariance, as well as decrease the feature dimension and improve the noise robustness. Finally, a linear SVM classifier is employed for recognition. We applied the proposed 2D-LCoLBP on four image recognition tasks-texture, object, face and food recognition with ten image databases. Experimental results show that 2D-LCoLBP has obviously low feature dimension but outperforms the state-of-the-art LBP-based descriptors in terms of recognition accuracy under noise-free, Gaussian noise and JPEG compression conditions
Beschreibung:Date Completed 23.08.2021
Date Revised 23.08.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2021.3104163