Mechanistic Study of Membrane Disruption by Antimicrobial Methacrylate Random Copolymers by the Single Giant Vesicle Method

Cationic amphiphilic polymers have been a platform to create new antimicrobial materials that act by disrupting bacterial cell membranes. While activity characterization and chemical optimization have been done in numerous studies, there remains a gap in our knowledge on the antimicrobial mechanisms...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 33 vom: 24. Aug., Seite 9982-9995
1. Verfasser: Tsukamoto, Manami (VerfasserIn)
Weitere Verfasser: Zappala, Emanuele, Caputo, Gregory A, Kikuchi, Jun-Ichi, Najarian, Kayvan, Kuroda, Kenichi, Yasuhara, Kazuma
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Anti-Infective Agents Lipid Bilayers Methacrylates Phosphatidylcholines Polymers
LEADER 01000naa a22002652 4500
001 NLM329228730
003 DE-627
005 20231225204649.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.1c01047  |2 doi 
028 5 2 |a pubmed24n1097.xml 
035 |a (DE-627)NLM329228730 
035 |a (NLM)34378943 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tsukamoto, Manami  |e verfasserin  |4 aut 
245 1 0 |a Mechanistic Study of Membrane Disruption by Antimicrobial Methacrylate Random Copolymers by the Single Giant Vesicle Method 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.08.2021 
500 |a Date Revised 26.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Cationic amphiphilic polymers have been a platform to create new antimicrobial materials that act by disrupting bacterial cell membranes. While activity characterization and chemical optimization have been done in numerous studies, there remains a gap in our knowledge on the antimicrobial mechanisms of the polymers, which is needed to connect their chemical structures and biological activities. To that end, we used a single giant unilamellar vesicle (GUV) method to identify the membrane-disrupting mechanism of methacrylate random copolymers. The copolymers consist of random sequences of aminoethyl methacrylate and methyl (MMA) or butyl (BMA) methacrylate, with low molecular weights of 1600-2100 g·mol-1. GUVs consisting of an 8:2 mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol), sodium salt (POPG) and those with only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were prepared to mimic the bacterial (Escherichia coli) or mammalian membranes, respectively. The disruption of bacteria and mammalian cell membrane-mimetic lipid bilayers in GUVs reflected the antimicrobial and hemolytic activities of the copolymers, suggesting that the copolymers act by disrupting cell membranes. The copolymer with BMA formed pores in the lipid bilayer, while that with MMA caused GUVs to burst. Therefore, we propose that the mechanism is inherent to the chemical identity or properties of hydrophobic groups. The copolymer with MMA showed characteristic sigmoid curves of the time course of GUV burst. We propose a new kinetic model with a positive feedback loop in the insertion of the polymer chains in the lipid bilayer. The novel finding of alkyl-dependent membrane-disrupting mechanisms will provide a new insight into the role of hydrophobic groups in the optimization strategy for antimicrobial activity and selectivity 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a Anti-Infective Agents  |2 NLM 
650 7 |a Lipid Bilayers  |2 NLM 
650 7 |a Methacrylates  |2 NLM 
650 7 |a Phosphatidylcholines  |2 NLM 
650 7 |a Polymers  |2 NLM 
700 1 |a Zappala, Emanuele  |e verfasserin  |4 aut 
700 1 |a Caputo, Gregory A  |e verfasserin  |4 aut 
700 1 |a Kikuchi, Jun-Ichi  |e verfasserin  |4 aut 
700 1 |a Najarian, Kayvan  |e verfasserin  |4 aut 
700 1 |a Kuroda, Kenichi  |e verfasserin  |4 aut 
700 1 |a Yasuhara, Kazuma  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 37(2021), 33 vom: 24. Aug., Seite 9982-9995  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:37  |g year:2021  |g number:33  |g day:24  |g month:08  |g pages:9982-9995 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.1c01047  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 37  |j 2021  |e 33  |b 24  |c 08  |h 9982-9995