|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM328759317 |
003 |
DE-627 |
005 |
20231225203627.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202008810
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1095.xml
|
035 |
|
|
|a (DE-627)NLM328759317
|
035 |
|
|
|a (NLM)34331349
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Dong, Ruiqi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Elucidating the Mechanism of Fast Na Storage Kinetics in Ether Electrolytes for Hard Carbon Anodes
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 10.09.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a The sodium storage performance of a hard carbon (HC) anode in ether electrolytes exhibits a higher initial Coulombic efficiency (ICE) and better rate performance compared to conventional ester electrolytes. However, the mechanism behind faster Na storage kinetics for HC in ether electrolytes remains unclear. Herein, a unique solvated Na+ and Na+ co-intercalation mechanism in ether electrolytes is reported using designed monodispersed HC nanospheres. In addition, a thin solid electrolyte interphase film with a high inorganic proportion formed in an ether electrolyte is visualized by cryo transmission electron microscopy and depth-profiling X-ray photoelectron spectroscopy, which facilitates Na+ transportation, and results in a high ICE. Furthermore, the fast solvated Na+ diffusion kinetics in ether electrolytes are also revealed via molecular dynamics simulation. Owing to the contribution of the ether electrolytes, an excellent rate performance (214 mAh g-1 at 10 A g-1 with an ultrahigh plateau capacity of 120 mAh g-1 ) and a high ICE (84.93% at 1 A g-1 ) are observed in a half cell; in a full cell, an attractive specific capacity of 110.3 mAh g-1 is achieved after 1000 cycles at 1 A g-1
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a anode
|
650 |
|
4 |
|a ether electrolytes
|
650 |
|
4 |
|a hard carbon
|
650 |
|
4 |
|a kinetics
|
650 |
|
4 |
|a sodium-ion batteries
|
700 |
1 |
|
|a Zheng, Lumin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bai, Ying
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ni, Qiao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Feng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ren, Haixia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Chuan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 36 vom: 05. Sept., Seite e2008810
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:36
|g day:05
|g month:09
|g pages:e2008810
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202008810
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 36
|b 05
|c 09
|h e2008810
|