Elucidating the Mechanism of Fast Na Storage Kinetics in Ether Electrolytes for Hard Carbon Anodes
© 2021 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 36 vom: 05. Sept., Seite e2008810 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article anode ether electrolytes hard carbon kinetics sodium-ion batteries |
Zusammenfassung: | © 2021 Wiley-VCH GmbH. The sodium storage performance of a hard carbon (HC) anode in ether electrolytes exhibits a higher initial Coulombic efficiency (ICE) and better rate performance compared to conventional ester electrolytes. However, the mechanism behind faster Na storage kinetics for HC in ether electrolytes remains unclear. Herein, a unique solvated Na+ and Na+ co-intercalation mechanism in ether electrolytes is reported using designed monodispersed HC nanospheres. In addition, a thin solid electrolyte interphase film with a high inorganic proportion formed in an ether electrolyte is visualized by cryo transmission electron microscopy and depth-profiling X-ray photoelectron spectroscopy, which facilitates Na+ transportation, and results in a high ICE. Furthermore, the fast solvated Na+ diffusion kinetics in ether electrolytes are also revealed via molecular dynamics simulation. Owing to the contribution of the ether electrolytes, an excellent rate performance (214 mAh g-1 at 10 A g-1 with an ultrahigh plateau capacity of 120 mAh g-1 ) and a high ICE (84.93% at 1 A g-1 ) are observed in a half cell; in a full cell, an attractive specific capacity of 110.3 mAh g-1 is achieved after 1000 cycles at 1 A g-1 |
---|---|
Beschreibung: | Date Revised 10.09.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202008810 |