Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14
© 2021 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 36 vom: 16. Sept., Seite e2102055 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article 2D/3D heterogeneous tin-perovskite absorbers conversion efficiency lead-free perovskite solar cells oxidation of tin tin-halide perovskites |
Zusammenfassung: | © 2021 Wiley-VCH GmbH. As the most promising lead-free one, tin-halides based perovskite solar cells still suffer from the severe bulk-defect due to the easy oxidation of tin from divalent to tetravalent. Here, a general and effective strategy is delivered to modulate the microstructure of 2D/3D heterogeneous tin-perovskite absorber films by substituting FAI with FPEABr in FASnI3 . The introduction of 2D phase can induce highly oriented growth of 3D FASnI3 and it is revealed in the optimal 2D/3D film that 2D phase embraces 3D grains and locates at the surfaces and grain boundaries. The FPEA+ based 2D tin-perovskite capping layer can offer a reducing atmosphere for vulnerable 3D FASnI3 grains. The unique microstructure effectively suppresses the well-known oxidation from Sn2+ to Sn4+ , as well as decreasing defect density, which leads to a remarkable enhanced device performance from 9.38% to 14.81% in conversion efficiency. The certified conversion efficiency of 14.03% announces a new record and moves a remarkable step from the last one (12.4%). Besides of this breakthrough, this work definitely paves a new way to fabricate high-quality tin-perovskite absorber film by constructing effective 2D/3D microstructures |
---|---|
Beschreibung: | Date Revised 10.09.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202102055 |