MGG : Monocular Global Geolocation for Outdoor Long-Range Targets

Traditional monocular vision localization methods are usually suitable for short-range area and indoor relative positioning tasks. This paper presents MGG, a novel monocular global geolocation method for outdoor long-range targets. This method takes a single RGB image combined with necessary navigat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 07., Seite 6349-6363
1. Verfasser: Gao, Feng (VerfasserIn)
Weitere Verfasser: Deng, Fang, Li, Linhan, Zhang, Lele, Zhu, Jiaqi, Yu, Chengpu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM327789360
003 DE-627
005 20231225201549.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3093789  |2 doi 
028 5 2 |a pubmed24n1092.xml 
035 |a (DE-627)NLM327789360 
035 |a (NLM)34232878 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gao, Feng  |e verfasserin  |4 aut 
245 1 0 |a MGG  |b Monocular Global Geolocation for Outdoor Long-Range Targets 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Traditional monocular vision localization methods are usually suitable for short-range area and indoor relative positioning tasks. This paper presents MGG, a novel monocular global geolocation method for outdoor long-range targets. This method takes a single RGB image combined with necessary navigation parameters as input and outputs targets' GPS information under the Global Navigation Satellite System (GNSS). In MGG, we first design a camera pose correction method via pixel mapping to correct the pose of the camera. Then, we use anchor-based methods to improve the detection ability for long-range targets with small image regions. Next, the local monocular vision model (LMVM) with a local structure coefficient is proposed to establish an accurate 2D-to-3D mapping relationship. Subsequently, a soft correspondence constraint (SCC) is presented to solve the local structure coefficient, which can weaken the coupling degree between detection and localization. Finally, targets can be geolocated through optimization theory-based methods and a series of coordinate transformations. Furthermore, we demonstrate the importance of focal length on solving the error explosion problem in locating long-range targets with monocular vision. Extensive experiments on the challenging KITTI dataset as well as applications in outdoor environments with targets located at a long range of up to 150 meters show the superiority of our method 
650 4 |a Journal Article 
700 1 |a Deng, Fang  |e verfasserin  |4 aut 
700 1 |a Li, Linhan  |e verfasserin  |4 aut 
700 1 |a Zhang, Lele  |e verfasserin  |4 aut 
700 1 |a Zhu, Jiaqi  |e verfasserin  |4 aut 
700 1 |a Yu, Chengpu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 07., Seite 6349-6363  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:07  |g pages:6349-6363 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3093789  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 07  |h 6349-6363