MGG : Monocular Global Geolocation for Outdoor Long-Range Targets
Traditional monocular vision localization methods are usually suitable for short-range area and indoor relative positioning tasks. This paper presents MGG, a novel monocular global geolocation method for outdoor long-range targets. This method takes a single RGB image combined with necessary navigat...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 07., Seite 6349-6363 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Zusammenfassung: | Traditional monocular vision localization methods are usually suitable for short-range area and indoor relative positioning tasks. This paper presents MGG, a novel monocular global geolocation method for outdoor long-range targets. This method takes a single RGB image combined with necessary navigation parameters as input and outputs targets' GPS information under the Global Navigation Satellite System (GNSS). In MGG, we first design a camera pose correction method via pixel mapping to correct the pose of the camera. Then, we use anchor-based methods to improve the detection ability for long-range targets with small image regions. Next, the local monocular vision model (LMVM) with a local structure coefficient is proposed to establish an accurate 2D-to-3D mapping relationship. Subsequently, a soft correspondence constraint (SCC) is presented to solve the local structure coefficient, which can weaken the coupling degree between detection and localization. Finally, targets can be geolocated through optimization theory-based methods and a series of coordinate transformations. Furthermore, we demonstrate the importance of focal length on solving the error explosion problem in locating long-range targets with monocular vision. Extensive experiments on the challenging KITTI dataset as well as applications in outdoor environments with targets located at a long range of up to 150 meters show the superiority of our method |
---|---|
Beschreibung: | Date Revised 14.07.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0042 |
DOI: | 10.1109/TIP.2021.3093789 |