Characterizing dislocation loops in irradiated polycrystalline Zr alloys by X-ray line profile analysis of powder diffraction patterns with satellites

© Tamás Ungár et al. 2021.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 54(2021), Pt 3 vom: 01. Juni, Seite 803-821
1. Verfasser: Ungár, Tamás (VerfasserIn)
Weitere Verfasser: Ribárik, Gábor, Topping, Matthew, Jones, Rebecca M A, Dan Xu, Xiao, Hulse, Rory, Harte, Allan, Tichy, Géza, Race, Christopher P, Frankel, Philipp, Preuss, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article X-ray line profile analysis dipole character of small loops satellite peaks scattering by irradiation-induced dislocation loops small dislocation loops total dislocation density of loops types of dislocation loop
LEADER 01000naa a22002652 4500
001 NLM32735495X
003 DE-627
005 20231225200613.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576721002673  |2 doi 
028 5 2 |a pubmed24n1091.xml 
035 |a (DE-627)NLM32735495X 
035 |a (NLM)34188613 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ungár, Tamás  |e verfasserin  |4 aut 
245 1 0 |a Characterizing dislocation loops in irradiated polycrystalline Zr alloys by X-ray line profile analysis of powder diffraction patterns with satellites 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Tamás Ungár et al. 2021. 
520 |a This work extends the convolutional multiple whole profile (CMWP) line profile analysis (LPA) procedure to determine the total dislocation density and character of irradiation-induced dislocation loops in commercial polycrystalline Zr specimens. Zr alloys are widely used in the nuclear industry as fuel cladding materials in which irradiation-induced point defects evolve into dislocation loops. LPA has long been established as a powerful tool to determine the density and nature of lattice defects in plastically deformed materials. The CMWP LPA procedure is based on the Krivoglaz-Wilkens theory in which the dislocation structure is characterized by the total dislocation density ρ and the dislocation arrangement parameter M. In commercial Zr alloys irradiation-induced dislocation loops broaden the peak profiles, mainly in the tail regions, and occasionally generate small satellites next to the Bragg peaks. In this work, two challenges in powder diffraction patterns of irradiated Zr alloys are solved: (i) determination of the M values from the long tail regions of peaks has been made unequivocal and (ii) satellites have been fitted separately, using physically well established principles, in order to exclude them from the dislocation determination process. Referring to the theory of heterogeneous dislocation distributions, determination of the total dislocation density from the main peaks free of satellites has been justified. The dislocation loop structure has been characterized by the total dislocation density of loops and the M parameter correlated to the dipole character of dislocation loops. The extended CMWP procedure is applied to determine the total dislocation density, the dipole character of dislocation loops, and the fractions of 〈a〉- and 〈c〉-type loops in proton- or neutron-irradiated polycrystalline Zr alloys used in the nuclear energy industry 
650 4 |a Journal Article 
650 4 |a X-ray line profile analysis 
650 4 |a dipole character of small loops 
650 4 |a satellite peaks 
650 4 |a scattering by irradiation-induced dislocation loops 
650 4 |a small dislocation loops 
650 4 |a total dislocation density of loops 
650 4 |a types of dislocation loop 
700 1 |a Ribárik, Gábor  |e verfasserin  |4 aut 
700 1 |a Topping, Matthew  |e verfasserin  |4 aut 
700 1 |a Jones, Rebecca M A  |e verfasserin  |4 aut 
700 1 |a Dan Xu, Xiao  |e verfasserin  |4 aut 
700 1 |a Hulse, Rory  |e verfasserin  |4 aut 
700 1 |a Harte, Allan  |e verfasserin  |4 aut 
700 1 |a Tichy, Géza  |e verfasserin  |4 aut 
700 1 |a Race, Christopher P  |e verfasserin  |4 aut 
700 1 |a Frankel, Philipp  |e verfasserin  |4 aut 
700 1 |a Preuss, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 54(2021), Pt 3 vom: 01. Juni, Seite 803-821  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:54  |g year:2021  |g number:Pt 3  |g day:01  |g month:06  |g pages:803-821 
856 4 0 |u http://dx.doi.org/10.1107/S1600576721002673  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 54  |j 2021  |e Pt 3  |b 01  |c 06  |h 803-821