AURORA : A Unified fRamework fOR Anomaly detection on multivariate time series

© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021.

Bibliographische Detailangaben
Veröffentlicht in:Data mining and knowledge discovery. - 2003. - 35(2021), 5 vom: 15., Seite 1882-1905
1. Verfasser: Zhang, Lin (VerfasserIn)
Weitere Verfasser: Zhang, Wenyu, McNeil, Maxwell J, Chengwang, Nachuan, Matteson, David S, Bogdanov, Petko
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Data mining and knowledge discovery
Schlagworte:Journal Article Alternating optimization Multivariate time series Offline anomaly detection Periodic dictionary Spline dictionary
LEADER 01000naa a22002652 4500
001 NLM327244135
003 DE-627
005 20231225200342.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10618-021-00771-7  |2 doi 
028 5 2 |a pubmed24n1090.xml 
035 |a (DE-627)NLM327244135 
035 |a (NLM)34177356 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Lin  |e verfasserin  |4 aut 
245 1 0 |a AURORA  |b A Unified fRamework fOR Anomaly detection on multivariate time series 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.02.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021. 
520 |a The ability to accurately and consistently discover anomalies in time series is important in many applications. Fields such as finance (fraud detection), information security (intrusion detection), healthcare, and others all benefit from anomaly detection. Intuitively, anomalies in time series are time points or sequences of time points that deviate from normal behavior characterized by periodic oscillations and long-term trends. For example, the typical activity on e-commerce websites exhibits weekly periodicity and grows steadily before holidays. Similarly, domestic usage of electricity exhibits daily and weekly oscillations combined with long-term season-dependent trends. How can we accurately detect anomalies in such domains while simultaneously learning a model for normal behavior? We propose a robust offline unsupervised framework for anomaly detection in seasonal multivariate time series, called AURORA. A key innovation in our framework is a general background behavior model that unifies periodicity and long-term trends. To this end, we leverage a Ramanujan periodic dictionary and a spline-based dictionary to capture both seasonal and trend patterns. We conduct experiments on both synthetic and real-world datasets and demonstrate the effectiveness of our method. AURORA has significant advantages over existing models for anomaly detection, including high accuracy (AUC of up to 0.98), interpretability of recovered normal behavior ( 100 % accuracy in period detection), and the ability to detect both point and contextual anomalies. In addition, AURORA is orders of magnitude faster than baselines 
650 4 |a Journal Article 
650 4 |a Alternating optimization 
650 4 |a Multivariate time series 
650 4 |a Offline anomaly detection 
650 4 |a Periodic dictionary 
650 4 |a Spline dictionary 
700 1 |a Zhang, Wenyu  |e verfasserin  |4 aut 
700 1 |a McNeil, Maxwell J  |e verfasserin  |4 aut 
700 1 |a Chengwang, Nachuan  |e verfasserin  |4 aut 
700 1 |a Matteson, David S  |e verfasserin  |4 aut 
700 1 |a Bogdanov, Petko  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Data mining and knowledge discovery  |d 2003  |g 35(2021), 5 vom: 15., Seite 1882-1905  |w (DE-627)NLM191691062  |x 1384-5810  |7 nnns 
773 1 8 |g volume:35  |g year:2021  |g number:5  |g day:15  |g pages:1882-1905 
856 4 0 |u http://dx.doi.org/10.1007/s10618-021-00771-7  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_61 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_121 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2002 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2012 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2043 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2162 
951 |a AR 
952 |d 35  |j 2021  |e 5  |b 15  |h 1882-1905