Support Vector Machine Classifier via L0/1 Soft-Margin Loss

Support vector machines (SVM) have drawn wide attention for the last two decades due to its extensive applications, so a vast body of work has developed optimization algorithms to solve SVM with various soft-margin losses. To distinguish all, in this paper, we aim at solving an ideal soft-margin los...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 24. Okt., Seite 7253-7265
1. Verfasser: Wang, Huajun (VerfasserIn)
Weitere Verfasser: Shao, Yuanhai, Zhou, Shenglong, Zhang, Ce, Xiu, Naihua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM327133953
003 DE-627
005 20231225200113.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3092177  |2 doi 
028 5 2 |a pubmed24n1090.xml 
035 |a (DE-627)NLM327133953 
035 |a (NLM)34166185 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Huajun  |e verfasserin  |4 aut 
245 1 0 |a Support Vector Machine Classifier via L0/1 Soft-Margin Loss 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2022 
500 |a Date Revised 22.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Support vector machines (SVM) have drawn wide attention for the last two decades due to its extensive applications, so a vast body of work has developed optimization algorithms to solve SVM with various soft-margin losses. To distinguish all, in this paper, we aim at solving an ideal soft-margin loss SVM: L0/1 soft-margin loss SVM (dubbed as L0/1-SVM). Many of the existing (non)convex soft-margin losses can be viewed as one of the surrogates of the L0/1 soft-margin loss. Despite its discrete nature, we manage to establish the optimality theory for the L0/1-SVM including the existence of the optimal solutions, the relationship between them and P-stationary points. These not only enable us to deliver a rigorous definition of L0/1 support vectors but also allow us to define a working set. Integrating such a working set, a fast alternating direction method of multipliers is then proposed with its limit point being a locally optimal solution to the L0/1-SVM. Finally, numerical experiments demonstrate that our proposed method outperforms some leading classification solvers from SVM communities, in terms of faster computational speed and a fewer number of support vectors. The bigger the data size is, the more evident its advantage appears 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Shao, Yuanhai  |e verfasserin  |4 aut 
700 1 |a Zhou, Shenglong  |e verfasserin  |4 aut 
700 1 |a Zhang, Ce  |e verfasserin  |4 aut 
700 1 |a Xiu, Naihua  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 24. Okt., Seite 7253-7265  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:24  |g month:10  |g pages:7253-7265 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3092177  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 24  |c 10  |h 7253-7265