|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM327133953 |
003 |
DE-627 |
005 |
20231225200113.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2021.3092177
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1090.xml
|
035 |
|
|
|a (DE-627)NLM327133953
|
035 |
|
|
|a (NLM)34166185
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Huajun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Support Vector Machine Classifier via L0/1 Soft-Margin Loss
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.09.2022
|
500 |
|
|
|a Date Revised 22.12.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Support vector machines (SVM) have drawn wide attention for the last two decades due to its extensive applications, so a vast body of work has developed optimization algorithms to solve SVM with various soft-margin losses. To distinguish all, in this paper, we aim at solving an ideal soft-margin loss SVM: L0/1 soft-margin loss SVM (dubbed as L0/1-SVM). Many of the existing (non)convex soft-margin losses can be viewed as one of the surrogates of the L0/1 soft-margin loss. Despite its discrete nature, we manage to establish the optimality theory for the L0/1-SVM including the existence of the optimal solutions, the relationship between them and P-stationary points. These not only enable us to deliver a rigorous definition of L0/1 support vectors but also allow us to define a working set. Integrating such a working set, a fast alternating direction method of multipliers is then proposed with its limit point being a locally optimal solution to the L0/1-SVM. Finally, numerical experiments demonstrate that our proposed method outperforms some leading classification solvers from SVM communities, in terms of faster computational speed and a fewer number of support vectors. The bigger the data size is, the more evident its advantage appears
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Shao, Yuanhai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhou, Shenglong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Ce
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiu, Naihua
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 44(2022), 10 vom: 24. Okt., Seite 7253-7265
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2022
|g number:10
|g day:24
|g month:10
|g pages:7253-7265
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2021.3092177
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2022
|e 10
|b 24
|c 10
|h 7253-7265
|