Support Vector Machine Classifier via L0/1 Soft-Margin Loss
Support vector machines (SVM) have drawn wide attention for the last two decades due to its extensive applications, so a vast body of work has developed optimization algorithms to solve SVM with various soft-margin losses. To distinguish all, in this paper, we aim at solving an ideal soft-margin los...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 24. Okt., Seite 7253-7265 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | Support vector machines (SVM) have drawn wide attention for the last two decades due to its extensive applications, so a vast body of work has developed optimization algorithms to solve SVM with various soft-margin losses. To distinguish all, in this paper, we aim at solving an ideal soft-margin loss SVM: L0/1 soft-margin loss SVM (dubbed as L0/1-SVM). Many of the existing (non)convex soft-margin losses can be viewed as one of the surrogates of the L0/1 soft-margin loss. Despite its discrete nature, we manage to establish the optimality theory for the L0/1-SVM including the existence of the optimal solutions, the relationship between them and P-stationary points. These not only enable us to deliver a rigorous definition of L0/1 support vectors but also allow us to define a working set. Integrating such a working set, a fast alternating direction method of multipliers is then proposed with its limit point being a locally optimal solution to the L0/1-SVM. Finally, numerical experiments demonstrate that our proposed method outperforms some leading classification solvers from SVM communities, in terms of faster computational speed and a fewer number of support vectors. The bigger the data size is, the more evident its advantage appears |
---|---|
Beschreibung: | Date Completed 16.09.2022 Date Revised 22.12.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2021.3092177 |