|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM32712251X |
003 |
DE-627 |
005 |
20250301233326.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2144/btn-2020-0173
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1090.xml
|
035 |
|
|
|a (DE-627)NLM32712251X
|
035 |
|
|
|a (NLM)34164991
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Deguo
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Ladder-shape melting temperature isothermal amplification of nucleic acids
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.12.2021
|
500 |
|
|
|a Date Revised 14.12.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a A novel method, termed ladder-shape melting temperature isothermal amplification (LMTIA), was developed in this study. As a proof of concept, one pair of primers or two pairs of nested primers and a thermostable DNA polymerase were employed to amplify the internal transcribed spacer of Oryza sativa with the ladder-shape melting temperature curve. Our results demonstrated that the LMTIA assay with nested primers was 50-fold more sensitive than the LAMP assay with the same level of specificity. The LMTIA method has the potential to be used for the prevention and control of emerging epidemics caused by different types of pathogens
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a isothermal amplification
|
650 |
|
4 |
|a ladder-shape melting temperature isothermal amplification (LMTIA)
|
650 |
|
4 |
|a loop-mediated isothermal amplification (LAMP)
|
650 |
|
4 |
|a melting curve
|
650 |
|
4 |
|a nucleic acids detection
|
650 |
|
4 |
|a primer design
|
650 |
|
7 |
|a DNA Primers
|2 NLM
|
650 |
|
7 |
|a Nucleic Acids
|2 NLM
|
700 |
1 |
|
|a Wang, Yongzhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Meng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yongqing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Juntao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Song, Chunmei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiao, Fugang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ping, Yuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pan, Chen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hu, Yushan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Chaoqun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Yanhong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t BioTechniques
|d 1993
|g 71(2021), 1 vom: 27. Juli, Seite 358-369
|w (DE-627)NLM012627046
|x 1940-9818
|7 nnas
|
773 |
1 |
8 |
|g volume:71
|g year:2021
|g number:1
|g day:27
|g month:07
|g pages:358-369
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2144/btn-2020-0173
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_21
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_50
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_99
|
912 |
|
|
|a GBV_ILN_121
|
912 |
|
|
|a GBV_ILN_130
|
912 |
|
|
|a GBV_ILN_227
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_618
|
912 |
|
|
|a GBV_ILN_640
|
912 |
|
|
|a GBV_ILN_754
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2002
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2012
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2023
|
912 |
|
|
|a GBV_ILN_2035
|
912 |
|
|
|a GBV_ILN_2040
|
912 |
|
|
|a GBV_ILN_2060
|
912 |
|
|
|a GBV_ILN_2099
|
912 |
|
|
|a GBV_ILN_2105
|
912 |
|
|
|a GBV_ILN_2121
|
912 |
|
|
|a GBV_ILN_2470
|
951 |
|
|
|a AR
|
952 |
|
|
|d 71
|j 2021
|e 1
|b 27
|c 07
|h 358-369
|