Reconstructing Unsteady Flow Data From Representative Streamlines via Diffusion and Deep-Learning-Based Denoising

We propose VFR-UFD, a new deep learning framework that performs vector field reconstruction (VFR) for unsteady flow data (UFD). Given integral flow lines (i.e., streamlines), we first generate low-quality UFD via diffusion. VFR-UFD then leverages a convolutional neural network to reconstruct spatiot...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE computer graphics and applications. - 1997. - 41(2021), 6 vom: 16. Nov., Seite 111-121
1. Verfasser: Gu, Pengfei (VerfasserIn)
Weitere Verfasser: Han, Jun, Chen, Danny Z, Wang, Chaoli
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE computer graphics and applications
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:We propose VFR-UFD, a new deep learning framework that performs vector field reconstruction (VFR) for unsteady flow data (UFD). Given integral flow lines (i.e., streamlines), we first generate low-quality UFD via diffusion. VFR-UFD then leverages a convolutional neural network to reconstruct spatiotemporally coherent, high-quality UFD. The core of VFR-UFD lies in recurrent residual blocks that iteratively refine and denoise the input vector fields at different scales, both locally and globally. We take consecutive time steps as input to capture temporal coherence and apply streamline-based optimization to preserve spatial coherence. To show the effectiveness of VFR-UFD, we experiment with several vector field data sets to report quantitative and qualitative results and compare VFR-UFD with two VFR methods and one compression algorithm
Beschreibung:Date Completed 07.01.2022
Date Revised 07.01.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1558-1756
DOI:10.1109/MCG.2021.3089627