GRIM : A General, Real-Time Deep Learning Inference Framework for Mobile Devices Based on Fine-Grained Structured Weight Sparsity

It is appealing but challenging to achieve real-time deep neural network (DNN) inference on mobile devices, because even the powerful modern mobile devices are considered as "resource-constrained" when executing large-scale DNNs. It necessitates the sparse model inference via weight prunin...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 16. Okt., Seite 6224-6239
Auteur principal: Niu, Wei (Auteur)
Autres auteurs: Li, Zhengang, Ma, Xiaolong, Dong, Peiyan, Zhou, Gang, Qian, Xuehai, Lin, Xue, Wang, Yanzhi, Ren, Bin
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, U.S. Gov't, Non-P.H.S.