GRIM : A General, Real-Time Deep Learning Inference Framework for Mobile Devices Based on Fine-Grained Structured Weight Sparsity

It is appealing but challenging to achieve real-time deep neural network (DNN) inference on mobile devices, because even the powerful modern mobile devices are considered as "resource-constrained" when executing large-scale DNNs. It necessitates the sparse model inference via weight prunin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 16. Okt., Seite 6224-6239
1. Verfasser: Niu, Wei (VerfasserIn)
Weitere Verfasser: Li, Zhengang, Ma, Xiaolong, Dong, Peiyan, Zhou, Gang, Qian, Xuehai, Lin, Xue, Wang, Yanzhi, Ren, Bin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM326808833
003 DE-627
005 20231225195410.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3089687  |2 doi 
028 5 2 |a pubmed24n1089.xml 
035 |a (DE-627)NLM326808833 
035 |a (NLM)34133272 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Niu, Wei  |e verfasserin  |4 aut 
245 1 0 |a GRIM  |b A General, Real-Time Deep Learning Inference Framework for Mobile Devices Based on Fine-Grained Structured Weight Sparsity 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a It is appealing but challenging to achieve real-time deep neural network (DNN) inference on mobile devices, because even the powerful modern mobile devices are considered as "resource-constrained" when executing large-scale DNNs. It necessitates the sparse model inference via weight pruning, i.e., DNN weight sparsity, and it is desirable to design a new DNN weight sparsity scheme that can facilitate real-time inference on mobile devices while preserving a high sparse model accuracy. This paper designs a novel mobile inference acceleration framework GRIM that is General to both convolutional neural networks (CNNs) and recurrent neural networks (RNNs) and that achieves Real-time execution and high accuracy, leveraging fine-grained structured sparse model Inference and compiler optimizations for Mobiles. We start by proposing a new fine-grained structured sparsity scheme through the Block-based Column-Row (BCR) pruning. Based on this new fine-grained structured sparsity, our GRIM framework consists of two parts: (a) the compiler optimization and code generation for real-time mobile inference; and (b) the BCR pruning optimizations for determining pruning hyperparameters and performing weight pruning. We compare GRIM with Alibaba MNN, TVM, TensorFlow-Lite, a sparse implementation based on CSR, PatDNN, and ESE (a representative FPGA inference acceleration framework for RNNs), and achieve up to 14.08× speedup 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Li, Zhengang  |e verfasserin  |4 aut 
700 1 |a Ma, Xiaolong  |e verfasserin  |4 aut 
700 1 |a Dong, Peiyan  |e verfasserin  |4 aut 
700 1 |a Zhou, Gang  |e verfasserin  |4 aut 
700 1 |a Qian, Xuehai  |e verfasserin  |4 aut 
700 1 |a Lin, Xue  |e verfasserin  |4 aut 
700 1 |a Wang, Yanzhi  |e verfasserin  |4 aut 
700 1 |a Ren, Bin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 16. Okt., Seite 6224-6239  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:16  |g month:10  |g pages:6224-6239 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3089687  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 16  |c 10  |h 6224-6239