GRIM : A General, Real-Time Deep Learning Inference Framework for Mobile Devices Based on Fine-Grained Structured Weight Sparsity

It is appealing but challenging to achieve real-time deep neural network (DNN) inference on mobile devices, because even the powerful modern mobile devices are considered as "resource-constrained" when executing large-scale DNNs. It necessitates the sparse model inference via weight prunin...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 16. Okt., Seite 6224-6239
1. Verfasser: Niu, Wei (VerfasserIn)
Weitere Verfasser: Li, Zhengang, Ma, Xiaolong, Dong, Peiyan, Zhou, Gang, Qian, Xuehai, Lin, Xue, Wang, Yanzhi, Ren, Bin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.