Automatic Quantification of Subsurface Defects by Analyzing Laser Ultrasonic Signals Using Convolutional Neural Networks and Wavelet Transform

The conventional machine learning algorithm for analyzing ultrasonic signals to detect structural defects necessarily identifies and extracts either time- or frequency-domain features manually, which has problems in reliability and effectiveness. This work proposes a novel approach by combining conv...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 68(2021), 10 vom: 09. Okt., Seite 3216-3225
Auteur principal: Guo, Shifeng (Auteur)
Autres auteurs: Feng, Haowen, Feng, Wei, Lv, Gaolong, Chen, Dan, Liu, Yanjun, Wu, Xinyu
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Sujets:Journal Article Research Support, Non-U.S. Gov't