Automatic Quantification of Subsurface Defects by Analyzing Laser Ultrasonic Signals Using Convolutional Neural Networks and Wavelet Transform

The conventional machine learning algorithm for analyzing ultrasonic signals to detect structural defects necessarily identifies and extracts either time- or frequency-domain features manually, which has problems in reliability and effectiveness. This work proposes a novel approach by combining conv...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 68(2021), 10 vom: 09. Okt., Seite 3216-3225
1. Verfasser: Guo, Shifeng (VerfasserIn)
Weitere Verfasser: Feng, Haowen, Feng, Wei, Lv, Gaolong, Chen, Dan, Liu, Yanjun, Wu, Xinyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't