Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain Adaptation Using Structurally Regularized Deep Clustering

Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain, given labeled data on a source domain whose distribution diverges from the target one. Mainstream UDA methods strive to learn domain-aligned features such that classifi...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 09. Okt., Seite 6517-6533
Auteur principal: Tang, Hui (Auteur)
Autres auteurs: Zhu, Xiatian, Chen, Ke, Jia, Kui, Chen, C L Philip
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't