Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain Adaptation Using Structurally Regularized Deep Clustering

Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain, given labeled data on a source domain whose distribution diverges from the target one. Mainstream UDA methods strive to learn domain-aligned features such that classifi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 09. Okt., Seite 6517-6533
1. Verfasser: Tang, Hui (VerfasserIn)
Weitere Verfasser: Zhu, Xiatian, Chen, Ke, Jia, Kui, Chen, C L Philip
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM32654898X
003 DE-627
005 20231225194832.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3087830  |2 doi 
028 5 2 |a pubmed24n1088.xml 
035 |a (DE-627)NLM32654898X 
035 |a (NLM)34106846 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tang, Hui  |e verfasserin  |4 aut 
245 1 0 |a Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain Adaptation Using Structurally Regularized Deep Clustering 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain, given labeled data on a source domain whose distribution diverges from the target one. Mainstream UDA methods strive to learn domain-aligned features such that classifiers trained on the source features can be readily applied to the target ones. Although impressive results have been achieved, these methods have a potential risk of damaging the intrinsic data structures of target discrimination, raising an issue of generalization particularly for UDA tasks in an inductive setting. To address this issue, we are motivated by a UDA assumption of structural similarity across domains, and propose to directly uncover the intrinsic target discrimination via constrained clustering, where we constrain the clustering solutions using structural source regularization that hinges on the very same assumption. Technically, we propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one, and we thus term our method as H-SRDC. Our hybrid model is based on a deep clustering framework that minimizes the Kullback-Leibler divergence between the distribution of network prediction and an auxiliary one, where we impose structural regularization by learning domain-shared classifier and cluster centroids. By enriching the structural similarity assumption, we are able to extend H-SRDC for a pixel-level UDA task of semantic segmentation. We conduct extensive experiments on seven UDA benchmarks of image classification and semantic segmentation. With no explicit feature alignment, our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings. We make our implementation codes publicly available at https://github.com/huitangtang/H-SRDC 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zhu, Xiatian  |e verfasserin  |4 aut 
700 1 |a Chen, Ke  |e verfasserin  |4 aut 
700 1 |a Jia, Kui  |e verfasserin  |4 aut 
700 1 |a Chen, C L Philip  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 09. Okt., Seite 6517-6533  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:09  |g month:10  |g pages:6517-6533 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3087830  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 09  |c 10  |h 6517-6533