|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM326548963 |
003 |
DE-627 |
005 |
20231225194832.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2021.3087695
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1088.xml
|
035 |
|
|
|a (DE-627)NLM326548963
|
035 |
|
|
|a (NLM)34106844
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xu, Yuanlu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Monocular 3D Pose Estimation via Pose Grammar and Data Augmentation
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.09.2022
|
500 |
|
|
|a Date Revised 19.11.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation from a monocular RGB image. Our model takes estimated 2D pose as the input and learns a generalized 2D-3D mapping function to leverage into 3D pose. The proposed model consists of a base network which efficiently captures pose-aligned features and a hierarchy of Bi-directional RNNs (BRNNs) on the top to explicitly incorporate a set of knowledge regarding human body configuration (i.e., kinematics, symmetry, motor coordination). The proposed model thus enforces high-level constraints over human poses. In learning, we develop a data augmentation algorithm to further improve model robustness against appearance variations and cross-view generalization ability. We validate our method on public 3D human pose benchmarks and propose a new evaluation protocol working on cross-view setting to verify the generalization capability of different methods. We empirically observe that most state-of-the-art methods encounter difficulty under such setting while our method can well handle such challenges
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Wang, Wenguan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Tengyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Xiaobai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Jianwen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Song-Chun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 44(2022), 10 vom: 09. Okt., Seite 6327-6344
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:44
|g year:2022
|g number:10
|g day:09
|g month:10
|g pages:6327-6344
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2021.3087695
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 44
|j 2022
|e 10
|b 09
|c 10
|h 6327-6344
|