Monocular 3D Pose Estimation via Pose Grammar and Data Augmentation

In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation from a monocular RGB image. Our model takes estimated 2D pose as the input and learns a generalized 2D-3D mapping function to leverage into 3D pose. The proposed model consists of a base network which efficien...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 09. Okt., Seite 6327-6344
1. Verfasser: Xu, Yuanlu (VerfasserIn)
Weitere Verfasser: Wang, Wenguan, Liu, Tengyu, Liu, Xiaobai, Xie, Jianwen, Zhu, Song-Chun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM326548963
003 DE-627
005 20231225194832.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3087695  |2 doi 
028 5 2 |a pubmed24n1088.xml 
035 |a (DE-627)NLM326548963 
035 |a (NLM)34106844 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yuanlu  |e verfasserin  |4 aut 
245 1 0 |a Monocular 3D Pose Estimation via Pose Grammar and Data Augmentation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation from a monocular RGB image. Our model takes estimated 2D pose as the input and learns a generalized 2D-3D mapping function to leverage into 3D pose. The proposed model consists of a base network which efficiently captures pose-aligned features and a hierarchy of Bi-directional RNNs (BRNNs) on the top to explicitly incorporate a set of knowledge regarding human body configuration (i.e., kinematics, symmetry, motor coordination). The proposed model thus enforces high-level constraints over human poses. In learning, we develop a data augmentation algorithm to further improve model robustness against appearance variations and cross-view generalization ability. We validate our method on public 3D human pose benchmarks and propose a new evaluation protocol working on cross-view setting to verify the generalization capability of different methods. We empirically observe that most state-of-the-art methods encounter difficulty under such setting while our method can well handle such challenges 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Wenguan  |e verfasserin  |4 aut 
700 1 |a Liu, Tengyu  |e verfasserin  |4 aut 
700 1 |a Liu, Xiaobai  |e verfasserin  |4 aut 
700 1 |a Xie, Jianwen  |e verfasserin  |4 aut 
700 1 |a Zhu, Song-Chun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 09. Okt., Seite 6327-6344  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:09  |g month:10  |g pages:6327-6344 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3087695  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 09  |c 10  |h 6327-6344