Monocular 3D Pose Estimation via Pose Grammar and Data Augmentation
In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation from a monocular RGB image. Our model takes estimated 2D pose as the input and learns a generalized 2D-3D mapping function to leverage into 3D pose. The proposed model consists of a base network which efficien...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 09. Okt., Seite 6327-6344 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation from a monocular RGB image. Our model takes estimated 2D pose as the input and learns a generalized 2D-3D mapping function to leverage into 3D pose. The proposed model consists of a base network which efficiently captures pose-aligned features and a hierarchy of Bi-directional RNNs (BRNNs) on the top to explicitly incorporate a set of knowledge regarding human body configuration (i.e., kinematics, symmetry, motor coordination). The proposed model thus enforces high-level constraints over human poses. In learning, we develop a data augmentation algorithm to further improve model robustness against appearance variations and cross-view generalization ability. We validate our method on public 3D human pose benchmarks and propose a new evaluation protocol working on cross-view setting to verify the generalization capability of different methods. We empirically observe that most state-of-the-art methods encounter difficulty under such setting while our method can well handle such challenges |
---|---|
Beschreibung: | Date Completed 16.09.2022 Date Revised 19.11.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2021.3087695 |