A data-oriented approach to making new molecules as a student experiment : artificial intelligence-enabling FAIR publication of NMR data for organic esters

© 2021 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 60(2022), 1 vom: 09. Jan., Seite 93-103
1. Verfasser: Rzepa, Henry S (VerfasserIn)
Weitere Verfasser: Kuhn, Stefan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article Research Support, Non-U.S. Gov't FAIR NMR spectroscopy artificial intelligence chemical education data repository metadata registration re-use
LEADER 01000naa a22002652 4500
001 NLM326545395
003 DE-627
005 20231225194828.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/mrc.5186  |2 doi 
028 5 2 |a pubmed24n1088.xml 
035 |a (DE-627)NLM326545395 
035 |a (NLM)34106480 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rzepa, Henry S  |e verfasserin  |4 aut 
245 1 2 |a A data-oriented approach to making new molecules as a student experiment  |b artificial intelligence-enabling FAIR publication of NMR data for organic esters 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.01.2022 
500 |a Date Revised 23.02.2022 
500 |a published: Print-Electronic 
500 |a ErratumIn: Magn Reson Chem. 2022 Nov;60(11):1032-1043. - PMID 35195296 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. 
520 |a The lack of machine-readable data is a major obstacle in the application of nuclear magnetic resonance (NMR) in artificial intelligence (AI). As a way to overcome this, a procedure for capturing primary NMR spectroscopic instrumental data annotated with rich metadata and publication in a Findable, Accessible, Interoperable and Reusable (FAIR) data repository is described as part of an undergraduate student laboratory experiment in a chemistry department. This couples the techniques of chemical synthesis of a never before made organic ester with illustration of modern data management practices and serves to raise student awareness of how FAIR data might improve research quality and replicability. Searches of the registered metadata are shown, which enable actionable finding and accessing of such data. The potential for re-use of the data in AI applications is discussed 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a FAIR 
650 4 |a NMR spectroscopy 
650 4 |a artificial intelligence 
650 4 |a chemical education 
650 4 |a data repository 
650 4 |a metadata registration 
650 4 |a re-use 
700 1 |a Kuhn, Stefan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Magnetic resonance in chemistry : MRC  |d 1985  |g 60(2022), 1 vom: 09. Jan., Seite 93-103  |w (DE-627)NLM098179667  |x 1097-458X  |7 nnns 
773 1 8 |g volume:60  |g year:2022  |g number:1  |g day:09  |g month:01  |g pages:93-103 
856 4 0 |u http://dx.doi.org/10.1002/mrc.5186  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 60  |j 2022  |e 1  |b 09  |c 01  |h 93-103