A data-oriented approach to making new molecules as a student experiment : artificial intelligence-enabling FAIR publication of NMR data for organic esters

© 2021 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 60(2022), 1 vom: 09. Jan., Seite 93-103
1. Verfasser: Rzepa, Henry S (VerfasserIn)
Weitere Verfasser: Kuhn, Stefan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article Research Support, Non-U.S. Gov't FAIR NMR spectroscopy artificial intelligence chemical education data repository metadata registration re-use
Beschreibung
Zusammenfassung:© 2021 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
The lack of machine-readable data is a major obstacle in the application of nuclear magnetic resonance (NMR) in artificial intelligence (AI). As a way to overcome this, a procedure for capturing primary NMR spectroscopic instrumental data annotated with rich metadata and publication in a Findable, Accessible, Interoperable and Reusable (FAIR) data repository is described as part of an undergraduate student laboratory experiment in a chemistry department. This couples the techniques of chemical synthesis of a never before made organic ester with illustration of modern data management practices and serves to raise student awareness of how FAIR data might improve research quality and replicability. Searches of the registered metadata are shown, which enable actionable finding and accessing of such data. The potential for re-use of the data in AI applications is discussed
Beschreibung:Date Completed 03.01.2022
Date Revised 23.02.2022
published: Print-Electronic
ErratumIn: Magn Reson Chem. 2022 Nov;60(11):1032-1043. - PMID 35195296
Citation Status PubMed-not-MEDLINE
ISSN:1097-458X
DOI:10.1002/mrc.5186