Confidence Estimation via Auxiliary Models

Reliably quantifying the confidence of deep neural classifiers is a challenging yet fundamental requirement for deploying such models in safety-critical applications. In this paper, we introduce a novel target criterion for model confidence, namely the true class probability (TCP). We show that TCP...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 04. Okt., Seite 6043-6055
Auteur principal: Corbiere, Charles (Auteur)
Autres auteurs: Thome, Nicolas, Saporta, Antoine, Vu, Tuan-Hung, Cord, Matthieu, Perez, Patrick
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article