Confidence Estimation via Auxiliary Models

Reliably quantifying the confidence of deep neural classifiers is a challenging yet fundamental requirement for deploying such models in safety-critical applications. In this paper, we introduce a novel target criterion for model confidence, namely the true class probability (TCP). We show that TCP...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 10 vom: 02. Okt., Seite 6043-6055
1. Verfasser: Corbiere, Charles (VerfasserIn)
Weitere Verfasser: Thome, Nicolas, Saporta, Antoine, Vu, Tuan-Hung, Cord, Matthieu, Perez, Patrick
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM326348395
003 DE-627
005 20231225194409.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3085983  |2 doi 
028 5 2 |a pubmed24n1087.xml 
035 |a (DE-627)NLM326348395 
035 |a (NLM)34086561 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Corbiere, Charles  |e verfasserin  |4 aut 
245 1 0 |a Confidence Estimation via Auxiliary Models 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2022 
500 |a Date Revised 19.11.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Reliably quantifying the confidence of deep neural classifiers is a challenging yet fundamental requirement for deploying such models in safety-critical applications. In this paper, we introduce a novel target criterion for model confidence, namely the true class probability (TCP). We show that TCP offers better properties for confidence estimation than standard maximum class probability (MCP). Since the true class is by essence unknown at test time, we propose to learn TCP criterion from data with an auxiliary model, introducing a specific learning scheme adapted to this context. We evaluate our approach on the task of failure prediction and of self-training with pseudo-labels for domain adaptation, which both necessitate effective confidence estimates. Extensive experiments are conducted for validating the relevance of the proposed approach in each task. We study various network architectures and experiment with small and large datasets for image classification and semantic segmentation. In every tested benchmark, our approach outperforms strong baselines 
650 4 |a Journal Article 
700 1 |a Thome, Nicolas  |e verfasserin  |4 aut 
700 1 |a Saporta, Antoine  |e verfasserin  |4 aut 
700 1 |a Vu, Tuan-Hung  |e verfasserin  |4 aut 
700 1 |a Cord, Matthieu  |e verfasserin  |4 aut 
700 1 |a Perez, Patrick  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 10 vom: 02. Okt., Seite 6043-6055  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:10  |g day:02  |g month:10  |g pages:6043-6055 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3085983  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 10  |b 02  |c 10  |h 6043-6055