Modeling Sub-Actions for Weakly Supervised Temporal Action Localization

As a challenging task of high-level video understanding, weakly supervised temporal action localization has attracted more attention recently. Due to the usage of video-level category labels, this task is usually formulated as the task of classification, which always suffers from the contradiction b...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 19., Seite 5154-5167
1. Verfasser: Huang, Linjiang (VerfasserIn)
Weitere Verfasser: Huang, Yan, Ouyang, Wanli, Wang, Liang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM325352755
003 DE-627
005 20231225192246.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3078324  |2 doi 
028 5 2 |a pubmed24n1084.xml 
035 |a (DE-627)NLM325352755 
035 |a (NLM)33983884 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Linjiang  |e verfasserin  |4 aut 
245 1 0 |a Modeling Sub-Actions for Weakly Supervised Temporal Action Localization 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a As a challenging task of high-level video understanding, weakly supervised temporal action localization has attracted more attention recently. Due to the usage of video-level category labels, this task is usually formulated as the task of classification, which always suffers from the contradiction between classification and detection. In this paper, we describe a novel approach to alleviate the contradiction for detecting more complete action instances by explicitly modeling sub-actions. Our method makes use of three innovations to model the latent sub-actions. First, our framework uses prototypes to represent sub-actions, which can be automatically learned in an end-to-end way. Second, we regard the relations among sub-actions as a graph, and construct the correspondences between sub-actions and actions by the graph pooling operation. Doing so not only makes the sub-actions inter-dependent to facilitate the multi-label setting, but also naturally use the video-level labels as weak supervision. Third, we devise three complementary loss functions, namely, representation loss, balance loss and relation loss to ensure the learned sub-actions are diverse and have clear semantic meanings. Experimental results on THUMOS14 and ActivityNet1.3 datasets demonstrate the effectiveness of our method and superior performance over state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Huang, Yan  |e verfasserin  |4 aut 
700 1 |a Ouyang, Wanli  |e verfasserin  |4 aut 
700 1 |a Wang, Liang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 19., Seite 5154-5167  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:19  |g pages:5154-5167 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3078324  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 19  |h 5154-5167