Nanofluid Boiling on Micro/Nano-engineered Surfaces

This work characterizes the impact of boiling aqueous nanofluids on engineered surfaces designed for boiling enhancement with pure water. Although micro/nano-engineered surfaces have been shown to enhance boiling, these achievements are typically demonstrated using deionized water or other purified...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 20 vom: 25. Mai, Seite 6107-6114
1. Verfasser: Ridwan, Shakerur (VerfasserIn)
Weitere Verfasser: Pollack, Jordan, McCarthy, Matthew
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM325253609
003 DE-627
005 20231225192043.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.0c02896  |2 doi 
028 5 2 |a pubmed24n1084.xml 
035 |a (DE-627)NLM325253609 
035 |a (NLM)33973789 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ridwan, Shakerur  |e verfasserin  |4 aut 
245 1 0 |a Nanofluid Boiling on Micro/Nano-engineered Surfaces 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This work characterizes the impact of boiling aqueous nanofluids on engineered surfaces designed for boiling enhancement with pure water. Although micro/nano-engineered surfaces have been shown to enhance boiling, these achievements are typically demonstrated using deionized water or other purified fluids. In parallel, particulate-laden fluids, also known as nanofluids, have been shown to enhance boiling as well. In this study, we investigate a variety of engineered surfaces and the boiling degradation due to the addition of SiO2 particles at a fixed concentration of 0.2% by volume but varying sizes from 7 nm to 10 μm. Although the addition of SiO2 particles is shown to moderately improve critical heat flux (CHF) on all the surfaces considered, the heat transfer coefficient (HTC) is seen to deteriorate with the addition of particles of any size. The bare copper surface and a nanostructured surface show particle size-dependent degradation of the HTC due to clogging. Bi-conductive surfaces also show a degradation of the HTC, but it was shown to be independent of the particle size. This work has shown specific and unique degradation mechanisms for each of the surfaces considered including the reduction of nucleation sites and thermal insulation. Additionally, the surfaces tested in this work exhibited a partial-CHF condition occurring with the addition of particles 
650 4 |a Journal Article 
700 1 |a Pollack, Jordan  |e verfasserin  |4 aut 
700 1 |a McCarthy, Matthew  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 37(2021), 20 vom: 25. Mai, Seite 6107-6114  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:37  |g year:2021  |g number:20  |g day:25  |g month:05  |g pages:6107-6114 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.0c02896  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 37  |j 2021  |e 20  |b 25  |c 05  |h 6107-6114