MLDA-Net : Multi-Level Dual Attention-Based Network for Self-Supervised Monocular Depth Estimation

The success of supervised learning-based single image depth estimation methods critically depends on the availability of large-scale dense per-pixel depth annotations, which requires both laborious and expensive annotation process. Therefore, the self-supervised methods are much desirable, which att...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 02., Seite 4691-4705
1. Verfasser: Song, Xibin (VerfasserIn)
Weitere Verfasser: Li, Wei, Zhou, Dingfu, Dai, Yuchao, Fang, Jin, Li, Hongdong, Zhang, Liangjun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM324544138
003 DE-627
005 20231225190538.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3074306  |2 doi 
028 5 2 |a pubmed24n1081.xml 
035 |a (DE-627)NLM324544138 
035 |a (NLM)33900917 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Xibin  |e verfasserin  |4 aut 
245 1 0 |a MLDA-Net  |b Multi-Level Dual Attention-Based Network for Self-Supervised Monocular Depth Estimation 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The success of supervised learning-based single image depth estimation methods critically depends on the availability of large-scale dense per-pixel depth annotations, which requires both laborious and expensive annotation process. Therefore, the self-supervised methods are much desirable, which attract significant attention recently. However, depth maps predicted by existing self-supervised methods tend to be blurry with many depth details lost. To overcome these limitations, we propose a novel framework, named MLDA-Net, to obtain per-pixel depth maps with shaper boundaries and richer depth details. Our first innovation is a multi-level feature extraction (MLFE) strategy which can learn rich hierarchical representation. Then, a dual-attention strategy, combining global attention and structure attention, is proposed to intensify the obtained features both globally and locally, resulting in improved depth maps with sharper boundaries. Finally, a reweighted loss strategy based on multi-level outputs is proposed to conduct effective supervision for self-supervised depth estimation. Experimental results demonstrate that our MLDA-Net framework achieves state-of-the-art depth prediction results on the KITTI benchmark for self-supervised monocular depth estimation with different input modes and training modes. Extensive experiments on other benchmark datasets further confirm the superiority of our proposed approach 
650 4 |a Journal Article 
700 1 |a Li, Wei  |e verfasserin  |4 aut 
700 1 |a Zhou, Dingfu  |e verfasserin  |4 aut 
700 1 |a Dai, Yuchao  |e verfasserin  |4 aut 
700 1 |a Fang, Jin  |e verfasserin  |4 aut 
700 1 |a Li, Hongdong  |e verfasserin  |4 aut 
700 1 |a Zhang, Liangjun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 02., Seite 4691-4705  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:02  |g pages:4691-4705 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3074306  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 02  |h 4691-4705