MLDA-Net : Multi-Level Dual Attention-Based Network for Self-Supervised Monocular Depth Estimation
The success of supervised learning-based single image depth estimation methods critically depends on the availability of large-scale dense per-pixel depth annotations, which requires both laborious and expensive annotation process. Therefore, the self-supervised methods are much desirable, which att...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 02., Seite 4691-4705
|
1. Verfasser: |
Song, Xibin
(VerfasserIn) |
Weitere Verfasser: |
Li, Wei,
Zhou, Dingfu,
Dai, Yuchao,
Fang, Jin,
Li, Hongdong,
Zhang, Liangjun |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|
Schlagworte: | Journal Article |