Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019

This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time serie...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 9 vom: 23. Sept., Seite 3108-3125
1. Verfasser: Liu, Zhengying (VerfasserIn)
Weitere Verfasser: Pavao, Adrien, Xu, Zhen, Escalera, Sergio, Ferreira, Fabio, Guyon, Isabelle, Hong, Sirui, Hutter, Frank, Ji, Rongrong, Junior, Julio C S Jacques, Li, Ge, Lindauer, Marius, Luo, Zhipeng, Madadi, Meysam, Nierhoff, Thomas, Niu, Kangning, Pan, Chunguang, Stoll, Danny, Treguer, Sebastien, Wang, Jin, Wang, Peng, Wu, Chenglin, Xiong, Youcheng, Zela, Arber, Zhang, Yang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a "meta-learner", "data ingestor", "model selector", "model/learner", and "evaluator". This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free "AutoDL self-service."
Beschreibung:Date Completed 29.09.2021
Date Revised 29.09.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1939-3539
DOI:10.1109/TPAMI.2021.3075372