Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019

This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time serie...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 9 vom: 23. Sept., Seite 3108-3125
Auteur principal: Liu, Zhengying (Auteur)
Autres auteurs: Pavao, Adrien, Xu, Zhen, Escalera, Sergio, Ferreira, Fabio, Guyon, Isabelle, Hong, Sirui, Hutter, Frank, Ji, Rongrong, Junior, Julio C S Jacques, Li, Ge, Lindauer, Marius, Luo, Zhipeng, Madadi, Meysam, Nierhoff, Thomas, Niu, Kangning, Pan, Chunguang, Stoll, Danny, Treguer, Sebastien, Wang, Jin, Wang, Peng, Wu, Chenglin, Xiong, Youcheng, Zela, Arber, Zhang, Yang
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't