This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time serie...
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 9 vom: 23. Sept., Seite 3108-3125
|
1. Verfasser: |
Liu, Zhengying
(VerfasserIn) |
Weitere Verfasser: |
Pavao, Adrien,
Xu, Zhen,
Escalera, Sergio,
Ferreira, Fabio,
Guyon, Isabelle,
Hong, Sirui,
Hutter, Frank,
Ji, Rongrong,
Junior, Julio C S Jacques,
Li, Ge,
Lindauer, Marius,
Luo, Zhipeng,
Madadi, Meysam,
Nierhoff, Thomas,
Niu, Kangning,
Pan, Chunguang,
Stoll, Danny,
Treguer, Sebastien,
Wang, Jin,
Wang, Peng,
Wu, Chenglin,
Xiong, Youcheng,
Zela, Arber,
Zhang, Yang |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article
Research Support, Non-U.S. Gov't |