Identification and Classification of Off-Vertex Critical Points for Contour Tree Construction on Unstructured Meshes of Hexahedra

The topology of isosurfaces changes at isovalues of critical points, making such points an important feature when building contour trees or Morse-Smale complexes. Hexahedral elements with linear interpolants can contain additional off-vertex critical points in element bodies and on element faces. Mo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 12 vom: 20. Dez., Seite 5178-5180
1. Verfasser: Koch, Marius K (VerfasserIn)
Weitere Verfasser: Kelly, Paul H J, Vincent, Peter E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM324323905
003 DE-627
005 20231225190058.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2021.3074438  |2 doi 
028 5 2 |a pubmed24n1081.xml 
035 |a (DE-627)NLM324323905 
035 |a (NLM)33877978 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Koch, Marius K  |e verfasserin  |4 aut 
245 1 0 |a Identification and Classification of Off-Vertex Critical Points for Contour Tree Construction on Unstructured Meshes of Hexahedra 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.10.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The topology of isosurfaces changes at isovalues of critical points, making such points an important feature when building contour trees or Morse-Smale complexes. Hexahedral elements with linear interpolants can contain additional off-vertex critical points in element bodies and on element faces. Moreover, a point on the face of a hexahedron which is critical in the element-local context is not necessarily critical in the global context. Weber et al. (2002) introduce a method to determine whether critical points on faces are also critical in the global context, based on the gradient of the asymptotic decider (G. M. Nielson and B. Hamann) (1991) in each element that shares the face. However, as defined, the method of Weber et al. contains an error, and can lead to incorrect results. In this work we correct the error 
650 4 |a Journal Article 
700 1 |a Kelly, Paul H J  |e verfasserin  |4 aut 
700 1 |a Vincent, Peter E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 12 vom: 20. Dez., Seite 5178-5180  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:28  |g year:2022  |g number:12  |g day:20  |g month:12  |g pages:5178-5180 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2021.3074438  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 12  |b 20  |c 12  |h 5178-5180