Identification and Classification of Off-Vertex Critical Points for Contour Tree Construction on Unstructured Meshes of Hexahedra
The topology of isosurfaces changes at isovalues of critical points, making such points an important feature when building contour trees or Morse-Smale complexes. Hexahedral elements with linear interpolants can contain additional off-vertex critical points in element bodies and on element faces. Mo...
Veröffentlicht in: | IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 12 vom: 20. Dez., Seite 5178-5180 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2022
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on visualization and computer graphics |
Schlagworte: | Journal Article |
Zusammenfassung: | The topology of isosurfaces changes at isovalues of critical points, making such points an important feature when building contour trees or Morse-Smale complexes. Hexahedral elements with linear interpolants can contain additional off-vertex critical points in element bodies and on element faces. Moreover, a point on the face of a hexahedron which is critical in the element-local context is not necessarily critical in the global context. Weber et al. (2002) introduce a method to determine whether critical points on faces are also critical in the global context, based on the gradient of the asymptotic decider (G. M. Nielson and B. Hamann) (1991) in each element that shares the face. However, as defined, the method of Weber et al. contains an error, and can lead to incorrect results. In this work we correct the error |
---|---|
Beschreibung: | Date Revised 27.10.2022 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0506 |
DOI: | 10.1109/TVCG.2021.3074438 |