Variance Reduced Methods for Non-Convex Composition Optimization

This paper explores the non-convex composition optimization consisting of inner and outer finite-sum functions with a large number of component functions. This problem arises in important applications such as nonlinear embedding and reinforcement learning. Although existing approaches such as stocha...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 12. Sept., Seite 5813-5825
1. Verfasser: Liu, Liu (VerfasserIn)
Weitere Verfasser: Liu, Ji, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM323817912
003 DE-627
005 20250301094241.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3071594  |2 doi 
028 5 2 |a pubmed25n1079.xml 
035 |a (DE-627)NLM323817912 
035 |a (NLM)33826512 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Liu  |e verfasserin  |4 aut 
245 1 0 |a Variance Reduced Methods for Non-Convex Composition Optimization 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper explores the non-convex composition optimization consisting of inner and outer finite-sum functions with a large number of component functions. This problem arises in important applications such as nonlinear embedding and reinforcement learning. Although existing approaches such as stochastic gradient descent (SGD) and stochastic variance reduced gradient (SVRG) descent can be applied to solve this problem, their query complexities tend to be high, especially when the number of inner component functions is large. Therefore, to significantly improve the query complexity of current approaches, we have devised the stochastic composition via variance reduction (SCVR). What's more, we analyze the query complexity under different numbers of inner function and outer function. Based on different kinds of estimation of inner component function, we also present the SCVRII algorithm, though the order of query complexities are the same with SCVR. Additionally, we propose an extension to handle the mini-batch cases, which improve the query complexity under the optimal mini-batch size. The experimental results validate our proposed algorithms and theoretical analyses 
650 4 |a Journal Article 
700 1 |a Liu, Ji  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 9 vom: 12. Sept., Seite 5813-5825  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:9  |g day:12  |g month:09  |g pages:5813-5825 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3071594  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 9  |b 12  |c 09  |h 5813-5825