Variance Reduced Methods for Non-Convex Composition Optimization

This paper explores the non-convex composition optimization consisting of inner and outer finite-sum functions with a large number of component functions. This problem arises in important applications such as nonlinear embedding and reinforcement learning. Although existing approaches such as stocha...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 12. Sept., Seite 5813-5825
Auteur principal: Liu, Liu (Auteur)
Autres auteurs: Liu, Ji, Tao, Dacheng
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article