Skeleton-Based Parametric 2-D Region Representation : Disk B-Spline Curves

The skeleton, or medial axis, is an important attribute of 2-D shapes. The disk B-spline curve (DBSC) is a skeleton-based parametric freeform 2-D region representation, which is defined in the B-spline form. The DBSC describes not only a 2-D region, which is suitable for describing heterogeneous mat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE computer graphics and applications. - 1991. - 41(2021), 3 vom: 03. Mai, Seite 59-70
1. Verfasser: Wu, Zhongke (VerfasserIn)
Weitere Verfasser: Wang, Xingce, Liu, Shaolong, Chen, Quan, Seah, Hock Soon, Tian, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE computer graphics and applications
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM323443796
003 DE-627
005 20231225184210.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/MCG.2021.3069847  |2 doi 
028 5 2 |a pubmed24n1078.xml 
035 |a (DE-627)NLM323443796 
035 |a (NLM)33788681 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Zhongke  |e verfasserin  |4 aut 
245 1 0 |a Skeleton-Based Parametric 2-D Region Representation  |b Disk B-Spline Curves 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 10.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The skeleton, or medial axis, is an important attribute of 2-D shapes. The disk B-spline curve (DBSC) is a skeleton-based parametric freeform 2-D region representation, which is defined in the B-spline form. The DBSC describes not only a 2-D region, which is suitable for describing heterogeneous materials in the region, but also the center curve (skeleton) of the region explicitly, which is suitable for animation, simulation, and recognition. In addition to being useful for error estimation of the B-spline curve, the DBSC can be used in designing and animating freeform 2-D regions. Despite increasing DBSC applications, its theory and fundamentals have not been thoroughly investigated. In this article, we discuss several fundamental properties and algorithms, such as the de Boor algorithm for DBSCs. We first derive the explicit evaluation and derivatives formulas at arbitrary points of a 2-D region (interior and boundary) represented by a DBSC and then provide heterogeneous object representation. We also introduce modeling and interactive heterogeneous object design methods for a DBSC, which consolidates DBSC theory and supports its further applications 
650 4 |a Journal Article 
700 1 |a Wang, Xingce  |e verfasserin  |4 aut 
700 1 |a Liu, Shaolong  |e verfasserin  |4 aut 
700 1 |a Chen, Quan  |e verfasserin  |4 aut 
700 1 |a Seah, Hock Soon  |e verfasserin  |4 aut 
700 1 |a Tian, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE computer graphics and applications  |d 1991  |g 41(2021), 3 vom: 03. Mai, Seite 59-70  |w (DE-627)NLM098172794  |x 1558-1756  |7 nnns 
773 1 8 |g volume:41  |g year:2021  |g number:3  |g day:03  |g month:05  |g pages:59-70 
856 4 0 |u http://dx.doi.org/10.1109/MCG.2021.3069847  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 41  |j 2021  |e 3  |b 03  |c 05  |h 59-70