Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis-Hastings algorithm

A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis-Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 83(2021), 5 vom: 16. März, Seite 1085-1102
1. Verfasser: Liu, Xingpo (VerfasserIn)
Weitere Verfasser: Xia, Chengfei, Tang, Yifan, Tu, Jiayang, Wang, Huimin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM322815835
003 DE-627
005 20250301053744.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2021.032  |2 doi 
028 5 2 |a pubmed25n1075.xml 
035 |a (DE-627)NLM322815835 
035 |a (NLM)33724938 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xingpo  |e verfasserin  |4 aut 
245 1 0 |a Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis-Hastings algorithm 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.03.2021 
500 |a Date Revised 18.03.2021 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis-Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of parameters and calculate their uncertainty intervals associated with the magnitude of estimated rainfall depth quantiles. Also, the efficiency of AM-H and conventional maximum likelihood estimation (MLE) in parameter estimation and uncertainty quantification are compared. And the procedure was implemented and discussed for the case of Chaohu city, China. Results of our work reveal that: (i) the adaptive Bayesian method, especially for return level associated to large return period, shows better estimated effect when compared with MLE; it should be noted that the implementation of MLE often produces overy optimistic results in the case of Chaohu city; (ii) AM-H algorithm is more reliable than MLE in terms of uncertainty quantification, and yields relatively narrow credible intervals for the quantile estimates to be instrumental in risk assessment of urban storm drainage planning 
650 4 |a Journal Article 
700 1 |a Xia, Chengfei  |e verfasserin  |4 aut 
700 1 |a Tang, Yifan  |e verfasserin  |4 aut 
700 1 |a Tu, Jiayang  |e verfasserin  |4 aut 
700 1 |a Wang, Huimin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 83(2021), 5 vom: 16. März, Seite 1085-1102  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnas 
773 1 8 |g volume:83  |g year:2021  |g number:5  |g day:16  |g month:03  |g pages:1085-1102 
856 4 0 |u http://dx.doi.org/10.2166/wst.2021.032  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 83  |j 2021  |e 5  |b 16  |c 03  |h 1085-1102