Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis-Hastings algorithm

A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis-Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of...

Description complète

Détails bibliographiques
Publié dans:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 83(2021), 5 vom: 16. März, Seite 1085-1102
Auteur principal: Liu, Xingpo (Auteur)
Autres auteurs: Xia, Chengfei, Tang, Yifan, Tu, Jiayang, Wang, Huimin
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Water science and technology : a journal of the International Association on Water Pollution Research
Sujets:Journal Article