Parameter optimization and uncertainty assessment for rainfall frequency modeling using an adaptive Metropolis-Hastings algorithm
A new parameter optimization and uncertainty assessment procedure using the Bayesian inference with an adaptive Metropolis-Hastings (AM-H) algorithm is presented for extreme rainfall frequency modeling. An efficient Markov chain Monte Carlo sampler is adopted to explore the posterior distribution of...
Description complète
Détails bibliographiques
| Publié dans: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 83(2021), 5 vom: 16. März, Seite 1085-1102
|
| Auteur principal: |
Liu, Xingpo
(Auteur) |
| Autres auteurs: |
Xia, Chengfei,
Tang, Yifan,
Tu, Jiayang,
Wang, Huimin |
| Format: | Article en ligne
|
| Langue: | English |
| Publié: |
2021
|
| Accès à la collection: | Water science and technology : a journal of the International Association on Water Pollution Research
|
| Sujets: | Journal Article |