|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM322480620 |
003 |
DE-627 |
005 |
20231225182128.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202008264
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1074.xml
|
035 |
|
|
|a (DE-627)NLM322480620
|
035 |
|
|
|a (NLM)33690954
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Ying
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Stable Unbiased Photo-Electrochemical Overall Water Splitting Exceeding 3% Efficiency via Covalent Triazine Framework/Metal Oxide Hybrid Photoelectrodes
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 14.04.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Photo-electrochemical (PEC) water splitting systems using oxide-based photoelectrodes are highly attractive for solar-to-chemical energy conversion. However, despite decades-long efforts, it is still challenging to develop efficient and stable photoelectrodes for practical applications. Here, thin layers of covalent triazine frameworks (CTF-BTh) containing a bithiophene moiety are conformably deposited onto the surfaces of a Cu2 O photocathode and a Mo-doped BiVO4 photoanode via electropolymerization to construct new hybrid photoelectrodes, successfully addressing the efficiency and stability issues. The CTF-BTh possesses a suitable band structure to form favorable band edge alignment with each metal oxide, creating a p-n junction and a staggered type-II heterojunction with Cu2 O and Mo-doped BiVO4 , respectively. Thus, the as-fabricated hybrid photoelectrodes exhibit substantially increased PEC performances. Meanwhile, the CTF-BTh film also serves as an effective corrosion-resistant overlayer for both photoelectrodes to inhibit photocorrosion and enable long-term operation for 150 h with only ≈10% loss in photocurrent densities. Furthermore, a stand-alone unbiased PEC tandem device comprising CTF-BTh-coated photoelectrodes exhibits 3.70% solar-to-hydrogen conversion efficiency. Even after continuous operation for 120 h, the efficiency can still retain at 3.24%
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a covalent triazine frameworks
|
650 |
|
4 |
|a heterojunctions
|
650 |
|
4 |
|a photo-electrochemical cells
|
650 |
|
4 |
|a surface protection
|
650 |
|
4 |
|a water splitting
|
700 |
1 |
|
|a Lv, Haifeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Zhen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Lei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Xiaojun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Hangxun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 15 vom: 10. Apr., Seite e2008264
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:15
|g day:10
|g month:04
|g pages:e2008264
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202008264
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 15
|b 10
|c 04
|h e2008264
|