A Practical O(N2) Outlier Removal Method for Correspondence-Based Point Cloud Registration

Point cloud registration (PCR) is an important and fundamental problem in 3D computer vision, whose goal is to seek an optimal rigid model to register a point cloud pair. Correspondence-based PCR techniques do not require initial guesses and gain more attentions. However, 3D keypoint techniques are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 8 vom: 10. Aug., Seite 3926-3939
1. Verfasser: Li, Jiayuan (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM322449707
003 DE-627
005 20231225182050.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3065021  |2 doi 
028 5 2 |a pubmed24n1074.xml 
035 |a (DE-627)NLM322449707 
035 |a (NLM)33687838 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jiayuan  |e verfasserin  |4 aut 
245 1 2 |a A Practical O(N2) Outlier Removal Method for Correspondence-Based Point Cloud Registration 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Point cloud registration (PCR) is an important and fundamental problem in 3D computer vision, whose goal is to seek an optimal rigid model to register a point cloud pair. Correspondence-based PCR techniques do not require initial guesses and gain more attentions. However, 3D keypoint techniques are much more difficult than their 2D counterparts, which results in extremely high outlier rates. Current robust techniques suffer from very high computational cost. In this paper, we propose a polynomial time ( O(N2), where N is the number of correspondences.) outlier removal method. Its basic idea is to reduce the input set into a smaller one with a lower outlier rate based on bound principle. To seek tight lower and upper bounds, we originally define two concepts, i.e., correspondence matrix (CM) and augmented correspondence matrix (ACM). We propose a cost function to minimize the determinant of CM or ACM, where the cost of CM rises to a tight lower bound and the cost of ACM leads to a tight upper bound. Then, we propose a scale-adaptive Cauchy estimator (SA-Cauchy) for further optimization. Extensive experiments on simulated and real PCR datasets demonstrate that the proposed method is robust at outlier rates above 99 percent and 1  ∼ 2 orders faster than its competitors. The source code will be made publicly available in https://ljy-rs.github.io/web/ 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 8 vom: 10. Aug., Seite 3926-3939  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:8  |g day:10  |g month:08  |g pages:3926-3939 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3065021  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 8  |b 10  |c 08  |h 3926-3939