|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM322253594 |
003 |
DE-627 |
005 |
20231225181640.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.15584
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1074.xml
|
035 |
|
|
|a (DE-627)NLM322253594
|
035 |
|
|
|a (NLM)33668074
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Craig, Matthew E
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Biological mechanisms may contribute to soil carbon saturation patterns
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.05.2021
|
500 |
|
|
|a Date Revised 27.05.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2021 John Wiley & Sons Ltd.
|
520 |
|
|
|a Increasing soil organic carbon (SOC) storage is a key strategy to mitigate rising atmospheric CO2 , yet SOC pools often appear to saturate, or increase at a declining rate, as carbon (C) inputs increase. Soil C saturation is commonly hypothesized to result from the finite amount of reactive mineral surface area available for retaining SOC, and is accordingly represented in SOC models as a physicochemically determined SOC upper limit. However, mineral-associated SOC is largely microbially generated. In this perspective, we present the hypothesis that apparent SOC saturation patterns could emerge as a result of ecological constraints on microbial biomass-for example, via competition or predation-leading to reduced C flow through microbes and a reduced rate of mineral-associated SOC formation as soil C inputs increase. Microbially explicit SOC models offer an opportunity to explore this hypothesis, yet most of these models predict linear microbial biomass increases with C inputs and insensitivity of SOC to input rates. Synthesis of 54 C addition studies revealed constraints on microbial biomass as C inputs increase. Different hypotheses limiting microbial density were embedded in a three-pool SOC model without explicit limits on mineral surface area. As inputs increased, the model demonstrated either no change, linear, or apparently saturating increases in mineral-associated and particulate SOC pools. Taken together, our results suggest that microbial constraints are common and could lead to reduced mineral-associated SOC formation as input rates increase. We conclude that SOC responses to altered C inputs-or any environmental change-are influenced by the ecological factors that limit microbial populations, allowing for a wider range of potential SOC responses to stimuli. Understanding how biotic versus abiotic factors contribute to these patterns will better enable us to predict and manage soil C dynamics
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a carbon inputs
|
650 |
|
4 |
|a decomposition
|
650 |
|
4 |
|a microbial biomass
|
650 |
|
4 |
|a microbial density dependence
|
650 |
|
4 |
|a soil carbon model
|
650 |
|
4 |
|a soil carbon sequestration
|
650 |
|
4 |
|a soil organic matter
|
650 |
|
7 |
|a Minerals
|2 NLM
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
700 |
1 |
|
|a Mayes, Melanie A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sulman, Benjamin N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Walker, Anthony P
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 27(2021), 12 vom: 22. Juni, Seite 2633-2644
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2021
|g number:12
|g day:22
|g month:06
|g pages:2633-2644
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.15584
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2021
|e 12
|b 22
|c 06
|h 2633-2644
|