Biological mechanisms may contribute to soil carbon saturation patterns
© 2021 John Wiley & Sons Ltd.
Veröffentlicht in: | Global change biology. - 1999. - 27(2021), 12 vom: 22. Juni, Seite 2633-2644 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Global change biology |
Schlagworte: | Journal Article carbon inputs decomposition microbial biomass microbial density dependence soil carbon model soil carbon sequestration soil organic matter Minerals Soil mehr... |
Zusammenfassung: | © 2021 John Wiley & Sons Ltd. Increasing soil organic carbon (SOC) storage is a key strategy to mitigate rising atmospheric CO2 , yet SOC pools often appear to saturate, or increase at a declining rate, as carbon (C) inputs increase. Soil C saturation is commonly hypothesized to result from the finite amount of reactive mineral surface area available for retaining SOC, and is accordingly represented in SOC models as a physicochemically determined SOC upper limit. However, mineral-associated SOC is largely microbially generated. In this perspective, we present the hypothesis that apparent SOC saturation patterns could emerge as a result of ecological constraints on microbial biomass-for example, via competition or predation-leading to reduced C flow through microbes and a reduced rate of mineral-associated SOC formation as soil C inputs increase. Microbially explicit SOC models offer an opportunity to explore this hypothesis, yet most of these models predict linear microbial biomass increases with C inputs and insensitivity of SOC to input rates. Synthesis of 54 C addition studies revealed constraints on microbial biomass as C inputs increase. Different hypotheses limiting microbial density were embedded in a three-pool SOC model without explicit limits on mineral surface area. As inputs increased, the model demonstrated either no change, linear, or apparently saturating increases in mineral-associated and particulate SOC pools. Taken together, our results suggest that microbial constraints are common and could lead to reduced mineral-associated SOC formation as input rates increase. We conclude that SOC responses to altered C inputs-or any environmental change-are influenced by the ecological factors that limit microbial populations, allowing for a wider range of potential SOC responses to stimuli. Understanding how biotic versus abiotic factors contribute to these patterns will better enable us to predict and manage soil C dynamics |
---|---|
Beschreibung: | Date Completed 27.05.2021 Date Revised 27.05.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1365-2486 |
DOI: | 10.1111/gcb.15584 |