Learning Causal Temporal Relation and Feature Discrimination for Anomaly Detection

Weakly supervised anomaly detection is a challenging task since frame-level labels are not given in the training phase. Previous studies generally employ neural networks to learn features and produce frame-level predictions and then use multiple instance learning (MIL)-based classification loss to e...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 3513-3527
1. Verfasser: Wu, Peng (VerfasserIn)
Weitere Verfasser: Liu, Jing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM322144701
003 DE-627
005 20250301031856.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3062192  |2 doi 
028 5 2 |a pubmed25n1073.xml 
035 |a (DE-627)NLM322144701 
035 |a (NLM)33656993 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Peng  |e verfasserin  |4 aut 
245 1 0 |a Learning Causal Temporal Relation and Feature Discrimination for Anomaly Detection 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.03.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Weakly supervised anomaly detection is a challenging task since frame-level labels are not given in the training phase. Previous studies generally employ neural networks to learn features and produce frame-level predictions and then use multiple instance learning (MIL)-based classification loss to ensure the interclass separability of the learned features; all operations simply take into account the current time information as input and ignore the historical observations. According to investigations, these solutions are universal but ignore two essential factors, i.e., the temporal cue and feature discrimination. The former introduces temporal context to enhance the current time feature, and the latter enforces the samples of different categories to be more separable in the feature space. In this article, we propose a method that consists of four modules to leverage the effect of these two ignored factors. The causal temporal relation (CTR) module captures local-range temporal dependencies among features to enhance features. The classifier (CL) projects enhanced features to the category space using the causal convolution and further expands the temporal modeling range. Two additional modules, namely, compactness (CP) and dispersion (DP) modules, are designed to learn the discriminative power of features, where the compactness module ensures the intraclass compactness of normal features, and the dispersion module enhances the interclass dispersion. Extensive experiments on three public benchmarks demonstrate the significance of causal temporal relations and feature discrimination for anomaly detection and the superiority of our proposed method 
650 4 |a Journal Article 
700 1 |a Liu, Jing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 3513-3527  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:3513-3527 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3062192  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 3513-3527