Learning Causal Temporal Relation and Feature Discrimination for Anomaly Detection
Weakly supervised anomaly detection is a challenging task since frame-level labels are not given in the training phase. Previous studies generally employ neural networks to learn features and produce frame-level predictions and then use multiple instance learning (MIL)-based classification loss to e...
Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 3513-3527 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
Schlagworte: | Journal Article |
Online verfügbar |
Volltext |