CDNet : Complementary Depth Network for RGB-D Salient Object Detection

Current RGB-D salient object detection (SOD) methods utilize the depth stream as complementary information to the RGB stream. However, the depth maps are usually of low-quality in existing RGB-D SOD datasets. Most RGB-D SOD networks trained with these datasets would produce error-prone results. In t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 26., Seite 3376-3390
1. Verfasser: Jin, Wen-Da (VerfasserIn)
Weitere Verfasser: Xu, Jun, Han, Qi, Zhang, Yi, Cheng, Ming-Ming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Current RGB-D salient object detection (SOD) methods utilize the depth stream as complementary information to the RGB stream. However, the depth maps are usually of low-quality in existing RGB-D SOD datasets. Most RGB-D SOD networks trained with these datasets would produce error-prone results. In this paper, we propose a novel Complementary Depth Network (CDNet) to well exploit saliency-informative depth features for RGB-D SOD. To alleviate the influence of low-quality depth maps to RGB-D SOD, we propose to select saliency-informative depth maps as the training targets and leverage RGB features to estimate meaningful depth maps. Besides, to learn robust depth features for accurate prediction, we propose a new dynamic scheme to fuse the depth features extracted from the original and estimated depth maps with adaptive weights. What's more, we design a two-stage cross-modal feature fusion scheme to well integrate the depth features with the RGB ones, further improving the performance of our CDNet on RGB-D SOD. Experiments on seven benchmark datasets demonstrate that our CDNet outperforms state-of-the-art RGB-D SOD methods. The code is publicly available at https://github.com/blanclist/CDNet
Beschreibung:Date Revised 10.03.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2021.3060167