Whole-Voltage-Range Oxygen Redox in P2-Layered Cathode Materials for Sodium-Ion Batteries
© 2021 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 13 vom: 01. Apr., Seite e2008194 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article Mg substitution Na-ion batteries cathode materials layered structures oxygen redox |
Zusammenfassung: | © 2021 Wiley-VCH GmbH. Oxygen-redox of layer-structured metal-oxide cathodes has drawn great attention as an effective approach to break through the bottleneck of their capacity limit. However, reversible oxygen-redox can only be obtained in the high-voltage region (usually over 3.5 V) in current metal-oxide cathodes. Here, we realize reversible oxygen-redox in a wide voltage range of 1.5-4.5 V in a P2-layered Na0.7 Mg0.2 [Fe0.2 Mn0.6 □0.2 ]O2 cathode material, where intrinsic vacancies are located in transition-metal (TM) sites and Mg-ions are located in Na sites. Mg-ions in the Na layer serve as "pillars" to stabilize the layered structure during electrochemical cycling, especially in the high-voltage region. Intrinsic vacancies in the TM layer create the local configurations of "□-O-□", "Na-O-□" and "Mg-O-□" to trigger oxygen-redox in the whole voltage range of charge-discharge. Time-resolved techniques demonstrate that the P2 phase is well maintained in a wide potential window range of 1.5-4.5 V even at 10 C. It is revealed that charge compensation from Mn- and O-ions contributes to the whole voltage range of 1.5-4.5 V, while the redox of Fe-ions only contributes to the high-voltage region of 3.0-4.5 V. The orphaned electrons in the nonbonding 2p orbitals of O that point toward TM-vacancy sites are responsible for reversible oxygen-redox, and Mg-ions in Na sites suppress oxygen release effectively |
---|---|
Beschreibung: | Date Revised 02.04.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202008194 |