|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM322004721 |
003 |
DE-627 |
005 |
20231225181118.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1063/5.0016100
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1073.xml
|
035 |
|
|
|a (DE-627)NLM322004721
|
035 |
|
|
|a (NLM)33642608
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Delin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Low Gilbert damping and high thermal stability of Ru-seeded L10-phase FePd perpendicular magnetic thin films at elevated temperatures
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 04.03.2021
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Bulk perpendicular magnetic anisotropy materials are proposed to be a promising candidate for next-generation ultrahigh density and ultralow energy-consumption spintronic devices. In this work, we experimentally investigate the structure, thermal stability, and magnetic properties of FePd thin films seeded by a Ru layer. An fcc-phase Ru layer induces the highly-ordered L10-phase FePd thin films with perpendicular magnetic anisotropy (K u ~ 10.1 Merg/cm3). The thermal stability of FePd samples is then studied through the annealing process. It is found that a K u ~ 6.8 Merg/cm3 can be obtained with the annealing temperature of 500 °C. In addition, the damping constant α, an important parameter for switching current density, is determined as a function of the testing temperature. We observe that α increases from 0.006 to 0.009 for as-deposited FePd sample and from 0.006 to 0.012 for 400 °C-annealed FePd sample as the testing temperature changes from 25 °C to 150 °C. These results suggest that Ru-seeded FePd provides great potential in scaling perpendicular magnetic tunnel junctions below 10 nm for applications in ultralow energy-consumption spintronic devices
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Huang, Dingbin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Ryan J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lattery, Dustin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Jinming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Xinjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gopman, Daniel B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mkhoyan, K Andre
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Jian-Ping
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Xiaoxia
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Applied physics letters
|d 1998
|g 117(2020), 8 vom: 01.
|w (DE-627)NLM098165984
|x 0003-6951
|7 nnns
|
773 |
1 |
8 |
|g volume:117
|g year:2020
|g number:8
|g day:01
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1063/5.0016100
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_21
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 117
|j 2020
|e 8
|b 01
|