Low Gilbert damping and high thermal stability of Ru-seeded L10-phase FePd perpendicular magnetic thin films at elevated temperatures

Bulk perpendicular magnetic anisotropy materials are proposed to be a promising candidate for next-generation ultrahigh density and ultralow energy-consumption spintronic devices. In this work, we experimentally investigate the structure, thermal stability, and magnetic properties of FePd thin films...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters. - 1998. - 117(2020), 8 vom: 01.
1. Verfasser: Zhang, Delin (VerfasserIn)
Weitere Verfasser: Huang, Dingbin, Wu, Ryan J, Lattery, Dustin, Liu, Jinming, Wang, Xinjun, Gopman, Daniel B, Mkhoyan, K Andre, Wang, Jian-Ping, Wang, Xiaoxia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Applied physics letters
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Bulk perpendicular magnetic anisotropy materials are proposed to be a promising candidate for next-generation ultrahigh density and ultralow energy-consumption spintronic devices. In this work, we experimentally investigate the structure, thermal stability, and magnetic properties of FePd thin films seeded by a Ru layer. An fcc-phase Ru layer induces the highly-ordered L10-phase FePd thin films with perpendicular magnetic anisotropy (K u ~ 10.1 Merg/cm3). The thermal stability of FePd samples is then studied through the annealing process. It is found that a K u ~ 6.8 Merg/cm3 can be obtained with the annealing temperature of 500 °C. In addition, the damping constant α, an important parameter for switching current density, is determined as a function of the testing temperature. We observe that α increases from 0.006 to 0.009 for as-deposited FePd sample and from 0.006 to 0.012 for 400 °C-annealed FePd sample as the testing temperature changes from 25 °C to 150 °C. These results suggest that Ru-seeded FePd provides great potential in scaling perpendicular magnetic tunnel junctions below 10 nm for applications in ultralow energy-consumption spintronic devices
Beschreibung:Date Revised 04.03.2021
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:0003-6951
DOI:10.1063/5.0016100